突如其来的灵感让徐川一口闷掉了手里的感冒药,杯中温热原本微微有些泛苦的药水此刻变得甘甜无比,😵🅳仿佛一杯蜂蜜水一样,沁人心脾。💔👣
手中的杯子放下,他从抽屉中摸出一叠纸笔,平铺在🁧桌面上演算起来。
Weyl-Berry猜想的弱化形式他已经搞定在了,但并不代表Weyl-Berry猜想的证明难度就🍍📞变简单了。
这就像🜔🁷是的弱哥德巴赫🗉猜想在13年的五月份就被两名数学家搞定了,但时至今天已经是15年的十一月份了,时间已经过去了整整两年👲多,可哥德巴赫猜想被完整的证明依旧遥遥无期一样。
徐川也并不觉得自己能在证明Weyl-Berry猜想的弱♺🍝化形式后短时间内能搞定Weyl-Ber😵🅳ry猜想。
哪怕有上辈子的一些数学知识打底,哪🞈💍怕他已经搞定了弱Weyl-Berry猜想,但他也不觉得自己能在一两年的时间内就解决掉完整的Weyl-Berry猜想。
可数学这东西,有时候是真的依赖灵感。
灵感👾🎛不够的时候,就像是写小说断更一样,便秘一个月都更不出来一章。
灵感来了,在基础知识足够扎实的时候,你很🍷🌪🁵快就能解决掉一个又一个的问题。
手中的黑色签字笔在洁白的A4纸上不🞈💍断的勾勒出一個个的字符。
“.....从Weyl定理3.2出🞈💍发,构造一个有界且连通的开集Ω,设Ω为满足以上条件(🄈🞱C)的R²(n≥2)中有界连通区域,其边界具有内Minkowski维数δ∈(n-1,n),则有λ→🌫🂂+∞,且有:
N(λ)-ϕ(λ)≤-Cn,δ(λ/π²)δ/🁧2.....Pn(t+o(1))+o(δˆλ/π²)
这里👾🎛的Pn(t)是3.2项定理的函数表达式。
证明:若在开方块Qκξ的各个边的切口(或洞)🚪🖌👍处加Neuman边💋🐕⛘界条件,而其他地方仍保持优Dirichlet边界条件,这时对应的📁🗼♔计数函数记为N(λ,Qκξ)。
于是我们有:N(λ)-ϕ(λ🉇🅎🅛)≤🝾🐳∑∞/k=0#......
在灵感得来初期,徐川下笔如有神助一般,很快就将Weyl-Berry猜想的分形维数和分形测度的谱不变量定义到了一个高纬边🖟界上。